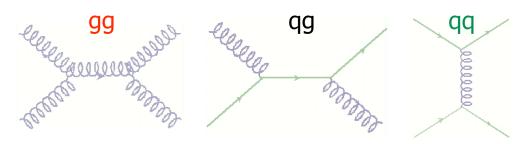
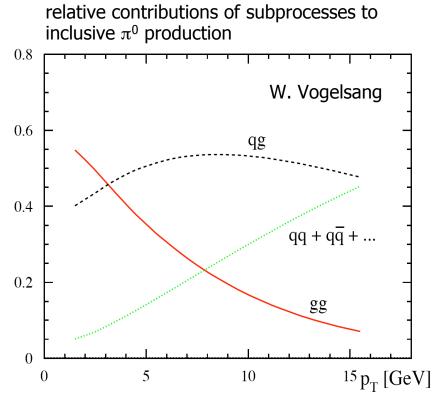
Longitudinal Spin Measurements with Inclusive Hadrons in Polarized p+p Collisions at 200 GeV

Frank Simon, MIT, for the STAR Collaboration

Outline

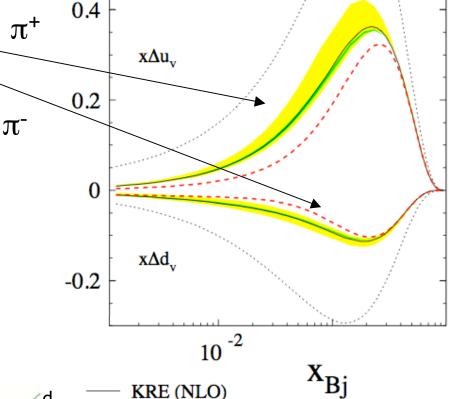
- Introduction
- Experimental Overview
- Inclusive Cross Sections
- Jet fragmentation
- Longitudinal Spin Asymmetries

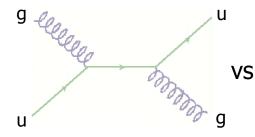


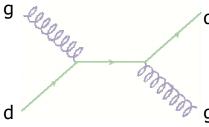

Introduction

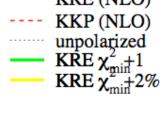
- Polarized p+p collisions provide sensitivity to gluon polarization in the nucleon
- With current statistics the focus is on inclusive measurements (Jets, Pions)
 - large contribution of gg and qg processes to overall cross section => good tool to study gluon polarization, but no constraint of event kinematics
 - Pions probe the same processes as jets, but with different experimental systematics and effects from fragmentation

- Unpolarized measurements of inclusive hadrons are of considerable interest:
 - study fragmentation functions via NLO pQCD vs measured cross section comparisons: currently large uncertainty in gluon FF
 - study fragmentation directly: electromagnetic trigger selects jets with leading π⁰




Introduction: Charged Pions




- Two complementary measurements with different contributions from polarized quark PDFs
- For qg processes, A_{LL}(π⁺) A_{LL}(π⁻) tracks sign of ΔG
- STAR was designed for efficient reconstruction and identification of charged pions over a large range of transverse momenta

D. de Florian et al., PRD 71, 094018 (2005)

The STAR Experiment

2005 run

Beam-Beam

Counters

Endcap

EMC

Solenoid Magnet

Time

Projection Chamber

(TPC)

Silicon

Vertex

Tracker

Forward TPC

Magnet

0.5 T Solenoid

Triggering & Luminosity Monitor

- Beam-Beam Counters
 - $3.4 < |\eta| < 5.0$

Central Tracking

- Large-volume TPC
 - $|\eta| < 1.5$

Calorimetry

- Barrel EMC (Pb/Scintilator)
 - $|\eta| < 1.0$
 - Shower-Maximum Detector

...and many other systems not used in the pion analysis

Used Triggers:

- Minimum Bias (MB): BBC Coincidence, highly prescaled
- High Tower 1 & 2 (HT1 / HT2): MB + one BEMC cell ($\Delta \eta x \Delta \phi = 0.05 \times 0.05$) above threshold (lower threshold trigger prescaled)

Barrel Electromagnetic

Calorimeter

(EMC)

Forward π⁰

Detector 🖶

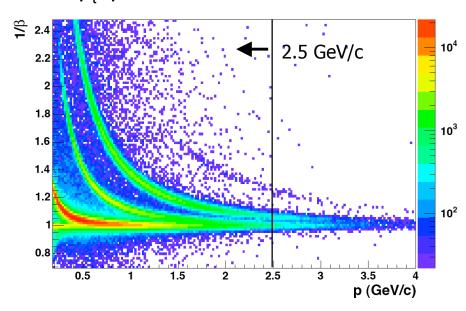
magnet

poletip

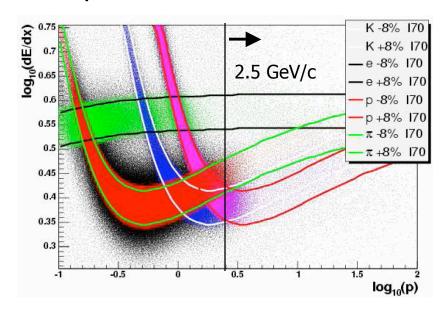
East DX

Magnet

■ Jetpatch Trigger: large BEMC area ($\Delta \eta x \Delta \phi = 1 \times 1$) above threshold

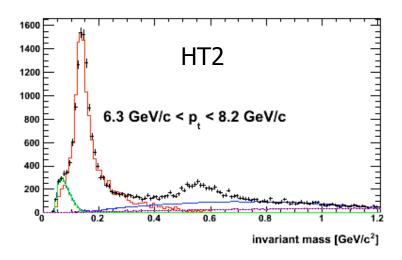

West D

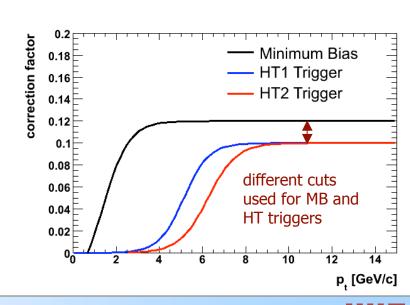
Magne

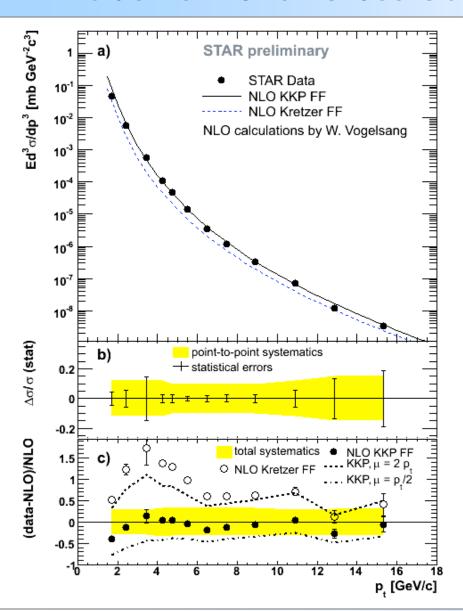

Charged Pions: Extraction

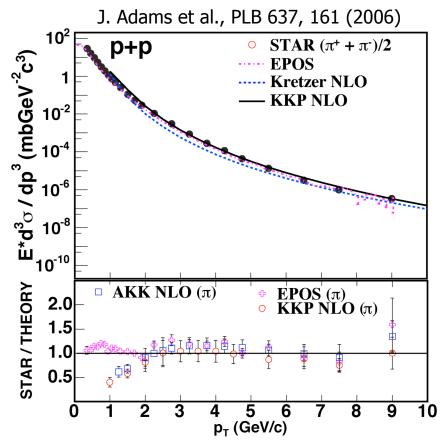
low p_t: particle ID via TOF

high p_t: particle ID via TPC dE/dx


- Time of flight measurement used to separate π , K, p at low p_t (< 2.5 GeV/c), limited by time resolution
- Specific energy loss in the TPC can be used at high p_t to provide π , K, p separation (pt > 2.5 GeV/c) since the π dE/dx is higher than that for K and p in the relativistic rise region

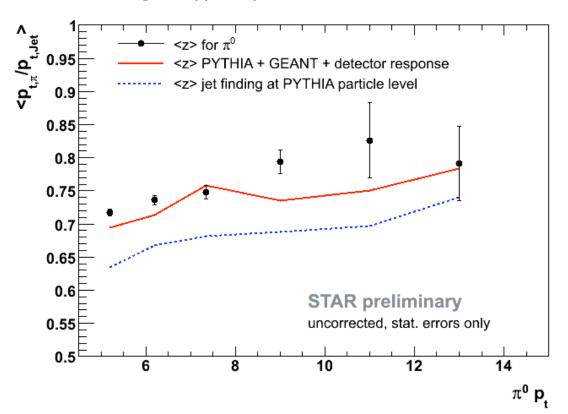

Neutral Pion Reconstruction

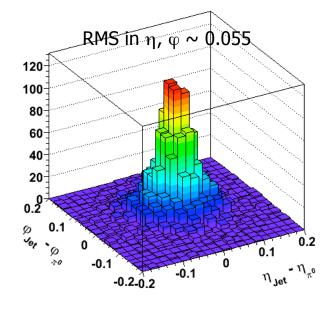

- $\gamma\gamma$ invariant mass spectrum near π^0 mass described by:
 - MC π^0 line shape
 - low invariant mass background (caused by cluster splitting in the SMD)
 - combinatoric background & residual fit
- Correction factor for cross section determination obtained from PYTHIA & HERWIG simulations



Inclusive Pions: Cross Section

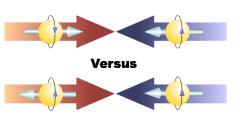
- excellent agreement with NLO pQCD
- charged and neutral pions favor KKP fragmentation functions over Kretzer set
- considerable scale uncertainty in theory





Neutral Pions in Jets

- STAR is capable of full Jet reconstruction
- reconstructed π^0 are associated with Jets (HT triggered) if the π^0 lies within the Jet cone (0.4 in η , ϕ)
- π^0 direction is strongly correlated with the Jet axis:
 - leading π^0 typically within 5° of the Jet axis



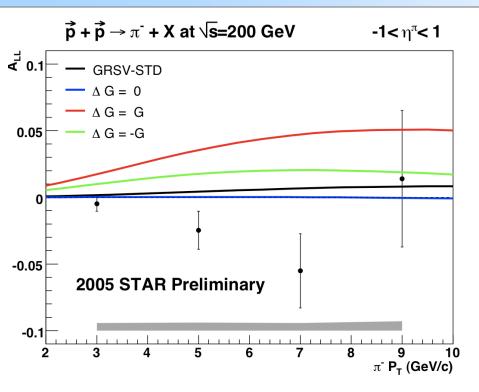
 Depends on p_t evolution of cross section and z dependence of the fragmentation function

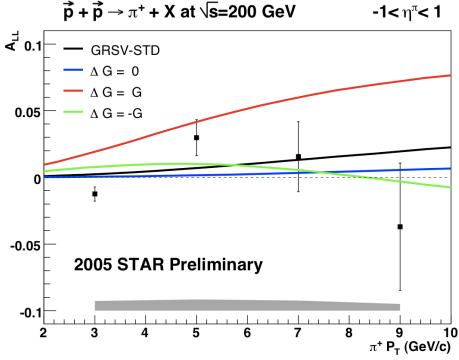
Asymmetry: Overview

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{1}{P_1 P_2} \times \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}} \text{ , FOM } \sim P_1^2 P_2^2 \cdot \int \mathcal{L} dt$$

Ingredients:

- Polarization: measured by RHIC polarimeters
- Relative Luminosity *R* measured with the STAR BBC & scaler system (relative luminosities for each bunch crossing available)


$$R = \frac{L_{++}}{L_{+-}}$$


- Spin dependent yields N_{++} , N_{+-} : number of detected particles for a given combination of beam polarization directions
- Spin direction in the interaction region verified by the STAR BBCs

Inclusive $\pi^{+/-}$ A_{LL}

GRSV polarized PDFs:

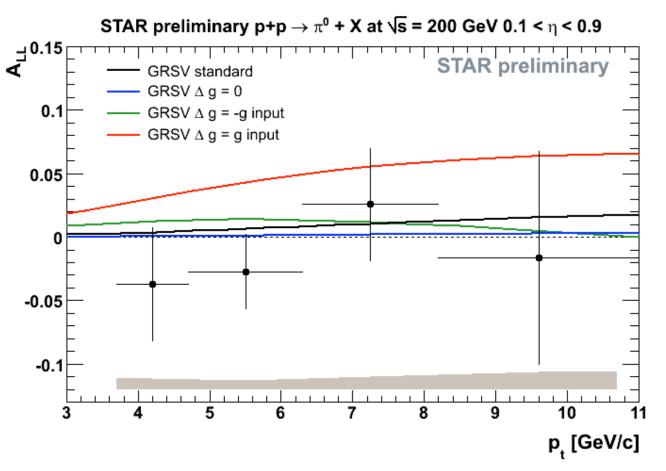
M. Glück, E. Reya, M. Stratmann, W. Vogelsang, PRD63, 094005 (2001).

B. Jäger, M. Stratmann and W. Vogelsang, PRD70, 034010 (2004).

Fragmentation functions modified from KKP:

B. A. Kniehl, G. Kramer and B. Pötter, Nucl. Phys. B582, 514 (2000).

KKP modification:


Charge-separated versions of KKP pion fragmentation functions obtained by multiplying favored partons by (1+z) and unfavored by (1-z).

Inclusive π^0 A

 χ^2 /ndf compared to NLO calculations (ignoring systematic errors):

GRSV Std: 0.8GRSV Max: 2.5

• GRSV Min: 0.8

• GRSV Zero: 0.4

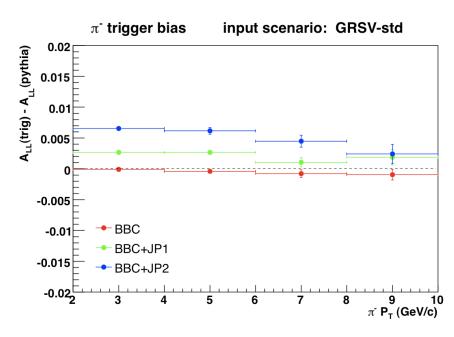
⇒ GRSV max scenario disfavored

overall scale uncertainty from beam polarization measurement not included

11

A_{II} Systematic Studies & Errors

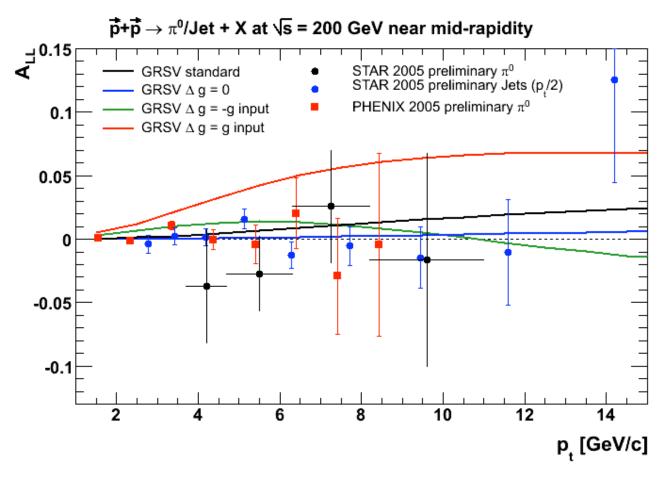
- Parity-Violating Single Spin Asymmetries
 - Come in through the weak interaction, and are limited to less than 10⁻⁴, so they should be consistent with zero at the present level of statistics
 - no significant single spin asymmetries observed
- Random Pattern Analysis
 - Asymmetries calculated with randomized bunch patterns
 - no indication of non-statistical effects found
- Systematic Errors assigned for
 - non-longitudinal spin components in beams 3 x 10⁻³
 - relative luminosities 2 x 10⁻³
 - Analysis specific for neutral pions:
 - remaining Background (from beam background, not removed invariant mass background) p_t dependent from 5 x 10⁻³ to 11 x 10⁻³
 - yield extraction (normalization of background model) from 3 x 10^{-3} to 7 x 10^{-3}
 - Analysis specific for charged pions
 - particle identification: 2 x 10⁻³
 - trigger bias: from 3×10^{-3} to 7×10^{-3}



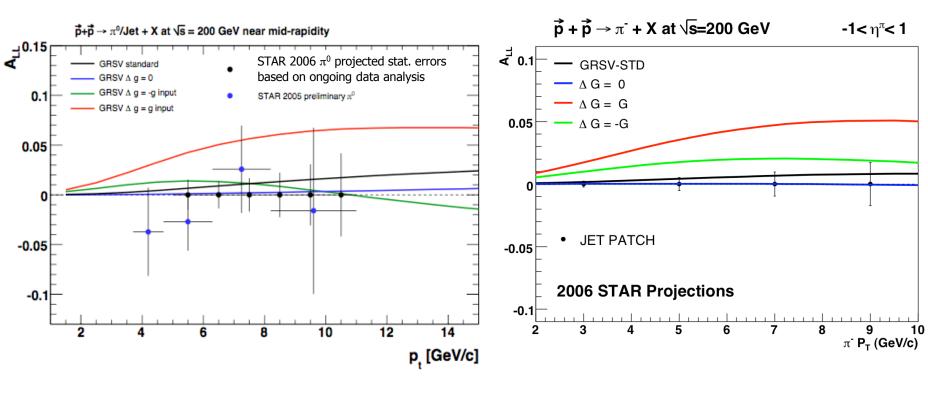
Trigger Bias for charged pions

- Majority of pions are sub-leading particles in trigger jet
 - Significant statistics from "awayside", untriggered jet as well
- PYTHIA afterburner used to construct "polarized" event generator
- Calculate A_{LL} in simulation with and without trigger requirement
- Bias estimated using average of GRSV-min and GRSV-std scenarios
- 3.0 7.3 x 10⁻³ as a function of p_T and charge sign

Other Cross-Checks


- Charge-summed asymmetry consistent with neutral pions
- "Near-side" and "away-side" asymmetries consistent with each other

Neutral Pions: How do they fit in?


- Comparison with other RHIC run 2005 results:
 - STAR inclusive Jets, p_t divided by 2
 - PHENIX inclusive π⁰

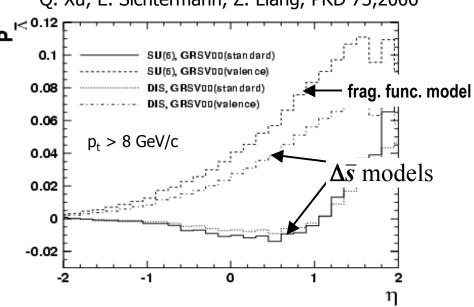
Projections for 2006 Data

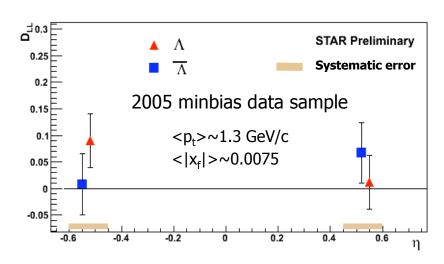
- Significant increase in sampled luminosity
- Polarization typically ~60%
- acceptance in BEMC increased by a factor of 2

significant increase in figure of merit!

15

Beyond Gluons




- Spin of Anti-A dominated by anti-s quark
 - Polarization of Anti-A contains information of anti-s quark polarization in the proton

$$D_{LL} = \frac{\sigma_{p^+p \to \Lambda^+X} - \sigma_{p^+p \to \Lambda^-X}}{\sigma_{p^+p \to \Lambda^+X} + \sigma_{p^+p \to \Lambda^-X}}$$

measures the spin transfer from beam to Λ

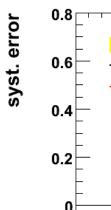
Q. Xu, E. Sichtermann, Z. Liang, PRD 73,2006

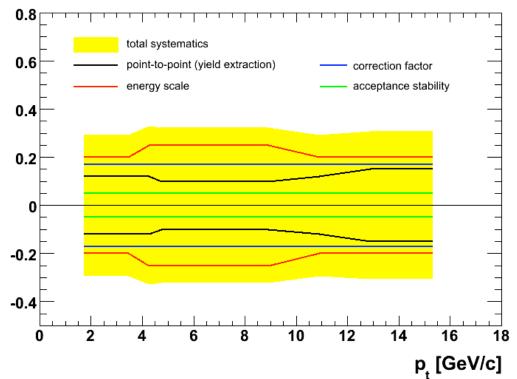
- ⇒ proof of principle
- ⇒ dedicated triggers needed to reach high p₊

Summary

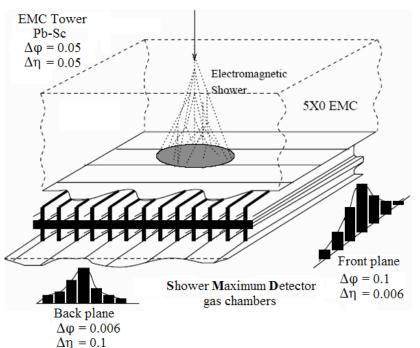
Inclusive hadron spin results from the STAR Experiment

- Inclusive cross sections consistent with NLO pQCD calculations
 - KKP fragmentation functions favored over Kretzer set
 - scale uncertainty of pQCD of comparable size as preliminary systematics
- Energetic π^0 carry a significant fraction of the total transverse momentum of their associated jet
- Double longitudinal spin asymmetry for charged and neutral pions disfavors large positive gluon polarization
 - consistent with previous observations with jets and π^0
 - result limited by statistics
- Significant increase in figure of merit with the already recorded 2006 data set, new possibilities open up for charged pions
- First proof of principle of Λ polarization measurement to access Δ s


Backup



Backup: Systematics: Cross Section



- Point-to-Point (yield extraction, background subtraction)
- Energy scale (5% uncertainty on BSMD gain calibration)
- Correction factor (variation of cuts, uncertainty in SMD gain (to a large extend built into MC, additional uncertainties included in systematics), statistical limitation of MC dataset)
- Acceptance Stability (changes in electronics status, modeling in MC)

Backup: Neutral Pion Reconstruction

- 2005 p+p dataset (after rigorous quality cuts): ~ 1.7 pb⁻¹
- Trigger & shower maximum detector in 2005 operational only for $0<\eta<1$, full acceptance -1 < $\eta<1$ available for 2006 data

tower size $(\Delta \phi \times \Delta \eta)0.05 \times 0.05$

 π^0 invariant mass: $m_{inv}^2 = 2E_1E_2(1-\cos\theta)$

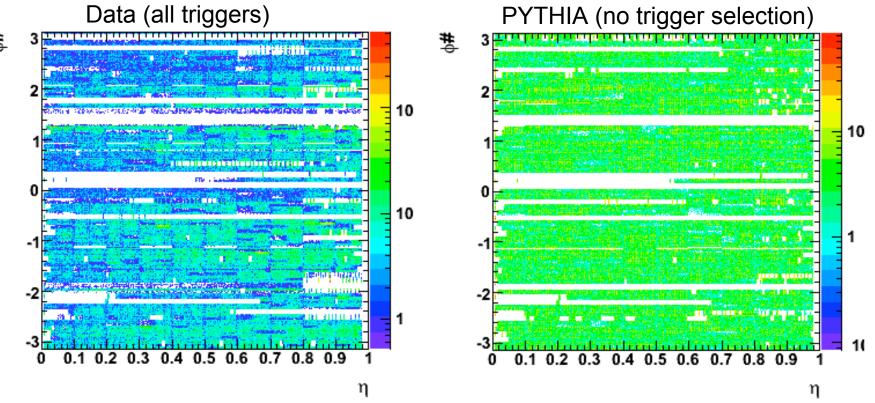
 \Rightarrow SMD becomes crucial for π^0 reconstruction for $p_t \sim 5$ GeV/c (photon separation equal to tower size)

veto calorimeter hits that have a charged track leading to them

- π^0 candidates accepted for 0.1 < y < 0.9
- π^0 has to be able to fire the trigger (but does not have to be the triggering particle)
- rejection of beam background found with pattern recognition code

Backup: Systematic Errors on ALL

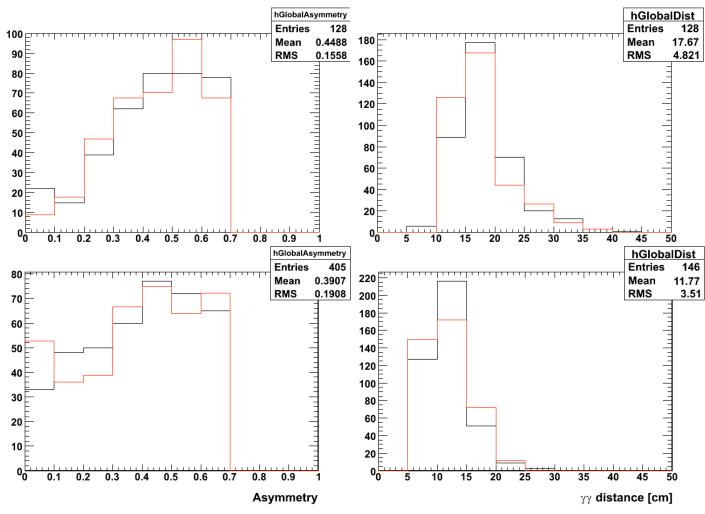
Bin	remaining Background	Yield Extration	relative Luminosity	non-long. Effects	Total Systematic	stat. Error
1	0.0052	0.0062	0.0022	0.003	0.0089	0.0443
2	0.0052	0.0032	0.0022	0.003	0.0072	0.0291
3	0.0082	0.0047	0.0022	0.003	0.0102	0.0439
4	0.0112	0.0069	0.0022	0.003	0.0137	0.0836



Backup: BEMC π⁰ Acceptance

 Photon Candidates (Calorimeter Hits) above 1 GeV requiring information from both SMD planes: Data vs MC

- Data histogram integrates over a running time of 12 days, MC takes the detector status at one specific time within that period
- Overall good agreement, detector acceptance reasonably modeled in MC

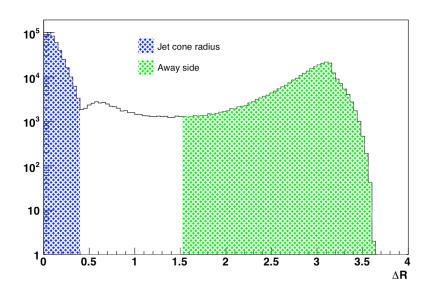


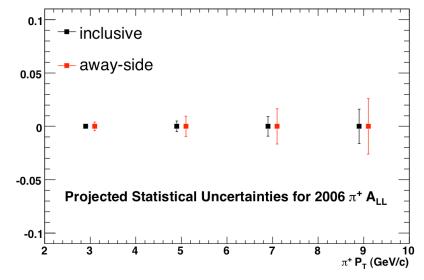
22

Backup: BEMC π^0 Data/MC Comparison

HT1 triggers
4.5 GeV/c < π⁰ p_t
< 4.6 GeV/c
black: data
red: Pythia

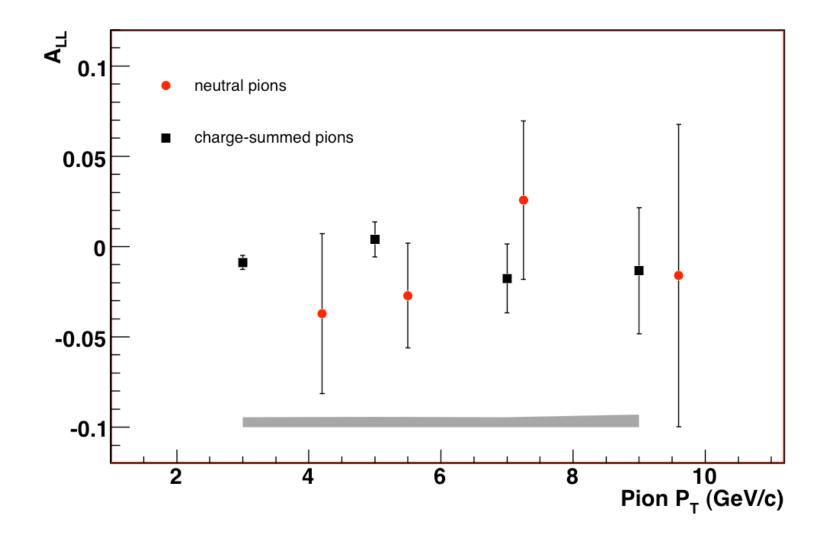
HT2 triggers
7.0 GeV/c < π⁰ p_t
< 7.2 GeV/c
black: data
red: Pythia


- Preliminary! Limited MC Statistics!
- π^0 properties well reproduced in MC for different p_t and triggers



Backup: Charged Pions Away-side ALL

- Calculate $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ for each pion relative to trigger jet
- Originally motivated by trigger bias studies
 - "away-side" sample free from fragmentation bias
- Reasonable statistical precision
- Needs theoretical guidance



Backup: Charged and Neutral Pions

